

ALDA 52nd Appual

ALPA 52nd Annual Air Safety Forum

AIRCRAFT BRAKE TESTING

Captain John E. Cashman
Director Flight Crew
Operations
The Boeing Company

Agenda

- Terminology
- Certified vs. Advisory data
- Brake testing (Lab and Flight)
- Boeing Recommendations

Terminology

- Runway Friction is not the same as Airplane Friction
- Airplane friction is calculated by Boeing
- Runway Friction is measured by friction vehicles

Airplane Terminology

Pavement

Airplane

** 707/727/737-200/ADV/747-100 for CAA cert

ALPA 52nd Annual Air Safety Forum July 2006

Runway Terminology

Landing Distance Data Boeing provides two distinct and different data sets:

Certified Data

- Purpose
 - Provide landing distance as required by regulations
- Requirements
 - FAR Parts 25 and 121
 - JAR Part 25 and JAROPS 1
- Use: AFM
 - Determine landing distance requirements prior to dispatch

Advisory Data

- Purpose
 - Provide landing distance capability for different runway conditions and braking configurations
- Requirements
 - -FAR 121 and JAROPS 1
- Use: QRH
 - Determine landing distance for making operational decisions

CERTIFIED vs ADVISORY

Begins in the Brake Lab

Brake Lab

 Objective – Tune the antiskid system to achieve 90 % efficiency over a range of runway conditions

Brake Lab

 Hardware in the loop with a dynamic simulation of the airplane

- Conducts thousands of simulated landings.

Braking Lab

- Can vary many parameters such as runway friction
- Can tune the Antiskid to increase efficiency

Flight test technique

- 3 degree approach angle
- Land clear of rubber
- Sink rate 3 to 6 Ft/sec
- Max manual brakes < 1 sec
- Nose down with no delay
- No Thrust Reverse

Boeing Recommendations

- Reference Boeing Flight Crew Training Manual
 - Chapter 6 Landing
 - Landing techniques
 - Factors affecting landing distance
 - Slippery runway landing

Touchdown sequence

Touchdown		Select reverse to interlock		Interlock cleared reverser deployed		Reverser spinup to selected level	de	At 60 knots decrease to reverse idle	
	1 sec.	1 sec.	1 – 3	3 sec.*	2 – 4 se	econds*			
	Transition		Selected reverse thrust						
	Brake Application			level – max or detent depending on model					

depending on model

^{*} Actual time dependent on engine/airframe

Factors Affecting Landing Distance

- Approach, Flare and Touchdown
 - Fly the airplane onto the runway
 - On Glideslope, On Speed
 - Do not allow the airplane to float
 - Do not extend flare by increasing pitch attitude
 - Do not attempt to hold the nose wheel off the runway
 - Deceleration on the runway is approximately 3 times greater than in the air (dry runway)

- Transition
 - After main gear touchdown initiate landing roll procedure
 - Speedbrakes (manually raise speedbrakes if they do not extend automatically)
 - Increase load on the gear for brake effectiveness
 - Drag
 - Fly the nose wheel on to the runway smoothly
 - Use appropriate autobrake or manually apply wheel brakes

- Automatic Wheel Brakes
 - Level 3 or 4 should be used for wet or slippery runways
 - Immediate initiation of reverse thrust at main gear touchdown
 - Reduces brake pressure to minimum level
 - Reduces stopping distance on slippery runways

- Manual Wheel Brakes
 - Immediately after touchdown apply a constant brake pedal pressure
 - Short or slippery runways use full brake pedal pressure
 - Do not attempt to modulate, pump, or improve braking by any other special technique
 - Do not release brake pressure until the airplane has been reduced to safe taxi speed
 - The antiskid system stops the airplane for all runway conditions in a shorter distance than is possible with either antiskid off or brake modulation

ALPA 52nd Annual Air Safety Forum July 2006

- Reverse thrust
 - After main gear touchdown rapidly raise the reverse thrust levers to the interlock

- Reverse thrust
 - After touchdown rapidly raise the reverse thrust levers to the interlock position
 - Apply reverse thrust as required (up to maximum)
 - Reverse thrust always reduces the "brake only" stopping distance
 - Reverse thrust is most effective at high speed